Archivo

Entradas Etiquetadas ‘kernel’

Sustituyendo Proxmox por una Ubuntu Server con KVM

lunes, 23 de marzo de 2020 Sin comentarios

Debido al hardware específico (HP Miniserver Gen8) que tengo y que para poder resolver los problemas de su BIOS con la paravirtualización se necesita aplicar un parche en el kernel que me dejó de funcionar en Proxmox en la última actualización, pues decir librarme de la comodidad de Proxmox en busca de algo más flexible.

Quería una distribución con software relativamente actualizado y documentado en el que me sintiese cómodo. Opté por una Ubuntu 18.04 para servidores que, aunque no está entre mis favoritas para el uso cotidiano, es bastante cómoda para funciones de servidor.

Software de virtualización

Después de la instalación básica necesitaba una serie de herramientas para virtualizar máquinas:

apt-get install qemu-kvm libvirt-daemon-system libvirt-clients bridge-utils

adduser `id -un` libvirt

Preparación previa del hardware

Hice que no cargase ningún driver de la gráfica a la que tenía pensada hacerle passthrough :

echo blacklist nouveau > /etc/modprobe.d/blacklist-nvidia-nouveau.conf

echo options nouveau modeset=0 >> /etc/modprobe.d/blacklist-nvidia-nouveau.conf

echo blacklist snd_hda_intel > /etc/modprobe.d/blacklist-nvidia-nouveau.conf

Con el comando «lpsci -nn» encontré los datos de la gráfica que me interesaban:

07:00.0 VGA compatible controller [0300]: NVIDIA Corporation GP107 [GeForce GTX 1050 Ti] [10de:1c82] (rev a1)
07:00.1 Audio device [0403]: NVIDIA Corporation GP107GL High Definition Audio Controller [10de:0fb9] (rev a1)

Y edité el fichero de configuración de Grub «/etc/default/grub»:

GRUB_CMDLINE_LINUX=»intel_iommu=on vfio_pci.ids=10de:1c82,10de:0fb9″

Para terminar de curarme en salud, creé el fichero «/etc/modprobe.d/vfio_pci.conf»:

options vfio_pci ids=10de:1c82,10de:0fb9

Y edité el de «/etc/initramfs-tools/modules»:

vfio
vfio_iommu_type1
vfio_virqfd
options vfio_pci ids=10de:1c82,10de:0fb9
vfio_pci ids=10de:1c82,10de:0fb9
vfio_pci

¿Excesivo? Puede ser. Quizás sobrase con sólo haber editado el fichero de Grub, pero se llega a un punto en el cual has dado tantas vueltas sobre lo mismo que no te fías con hacer lo mínimo indispensable.

Finalmente toca rehacer el arranque con los siguientes comandos:

update-grub
update-initramfs -u

Compilación del kernel

Editamos las fuentes de apt para poder descargar el fuente del software «/etc/apt/sources.list»:

deb-src http://es.archive.ubuntu.com/ubuntu/ bionic main restricted

deb-src http://es.archive.ubuntu.com/ubuntu/ bionic-updates main restricted

Descargamos el software necesario:

apt update

apt-get build-dep linux linux-image-$(uname -r) git fakeroot dkms default-jdk

Es posible que nos topemos con el siguiente error:

la descarga se realiza de forma desprotegida como superusuario, ya que al archivo «linux-signed_4.15.0-91.92.dsc» el usuario «_apt» no pudo acceder. – pkgAcquire::Run

Para solventarlo nos basta con hacer lo siguiente:

chown _apt /var/lib/update-notifier/package-data-downloads/partial/

Dentro de la carpeta «/usr/src/» descargaremos los fuentes del kernel de Ubuntu Bionic:

git clone git://kernel.ubuntu.com/ubuntu/ubuntu-bionic.git

Editaremos el fichero «/usr/src/ubuntu-bionic/drivers/iommu/intel-iommu.c» donde pone:

if (device_is_rmrr_locked(dev)) {
dev_warn(dev, «Device is ineligible for IOMMU domain attach due to platform RMRR requirement. Contact your platform vendor.\n»);
return -EPERM;
}

Pondremos lo siguiente:

if (device_is_rmrr_locked(dev)) {
dev_warn(dev, «Device is ineligible for IOMMU domain attach due to platform RMRR requirement. PARCHEADO.\n»);
}

En este paso, si tratamos de compilar el kernel nos encontraremos con un error relacionado con el script «ubuntu-bionic/debian/scripts/retpoline-check» y que tuve que modificar de este código:

count=$( diff -u «$prev» «$curr» | grep ‘^+[^+]’ | wc -l )
if [ «$count» != 0 ]; then
rc=1

A este otro:

count=$( diff -u «$prev» «$curr» | grep ‘^+[^+]’ | wc -l )
if [ «$count» != 0 ]; then
rc=0

Sé que está relacionado con las mitigaciones sobre las CPU de Intel pero no es algo que en esta máquina me importase mucho.

Desde el directorio de «/usr/src/ubuntu-bionic» lancé la compilación que duró un periodo de tiempo considerable:

fakeroot debian/rules binary

De dicho proceso se generaron una serie de paquetes .deb que instalé:

dpkg -i *.deb

Una vez instalado el kernel modificado, ahora sólo necesitaba que el equipo siempre arrancase con él, con lo que había que realizar algunos cambios en el cargador de arranque. Para saber qué modificaciones tenía que aplicar lancé el siguiente comando:

sed -nre «/submenu|menuentry/s/(.? )'([^’]+)’.*/\1 \2/p» < /boot/grub/grub.cfg

Me devolvió el listado visual de Grub que tenía que tener en cuenta:

menuentry Ubuntu
submenu Opciones avanzadas para Ubuntu
menuentry Ubuntu, con Linux 4.15.0-91-generic
menuentry Ubuntu, con Linux 4.15.0-91-generic (recovery mode)
menuentry Ubuntu, con Linux 4.15.0-88-lowlatency
menuentry Ubuntu, con Linux 4.15.0-88-lowlatency (recovery mode)
menuentry Ubuntu, con Linux 4.15.0-88-generic
menuentry Ubuntu, con Linux 4.15.0-88-generic (recovery mode)
menuentry Ubuntu, con Linux 4.15.0-76-generic
menuentry Ubuntu, con Linux 4.15.0-76-generic (recovery mode)

Entonces edité el fichero «/etc/default/grub» acorde:

GRUB_DEFAULT=»Opciones avanzadas para Ubuntu>Ubuntu, con Linux 4.15.0-88-generic«

Y además bloquee la posibilidad de que sufriese cambios a través de alguna actualización del gestor de paquetes y regeneré la configuración de Grub:

apt-mark hold 4.15.0-88-generic

update-grub

Tras un reinicio del equipo y con el comando «dmesg | grep -i vfio» deberíamos poder ver lo siguiente:

[230727.140577] vfio-pci 0000:07:00.1: Device is ineligible for IOMMU domain attach due to platform RMRR requirement. PARCHEADO.
[230727.730169] vfio_ecap_init: 0000:07:00.0 hiding ecap 0x19@0x900

Configuración del puente de red

Para que las máquinas virtuales puedan tener acceso directo a nuestra y así poder hacer uso de los recursos que en ella se encuentran hay que configurar un puente de red. Modificaremos el fichero «/etc/netplan/01-netcfg.yaml»:

network:
version: 2
renderer: networkd

ethernets:
eno2:
dhcp4: false
dhcp6: false

bridges:
br0:
interfaces: [eno2]
addresses: [192.168.1.10/24]
gateway4: 192.168.1.1
mtu: 1500
nameservers:
addresses: [192.168.1.1]
parameters:
stp: true
forward-delay: 4
dhcp4: no
dhcp6: no

El dispositivo «eno2» sería nuestra tarjeta de red con conectividad y «br0» sería al puente hacia nuestras máquinas virtuales. Hay que tener en cuenta que yo he preferido establecer una IP fija para mi tarjeta con conectividad física pero se podría haber dejado con DHCP.

Gestión web del servidor

Para poder gestionar de manera fácil el servidor a través de un entorno web, he optado por hacer uso de Cockpit, el cual se puede instalar de la siguiente forma:

apt install cockpit cockpit-machines cockpit-docker cockpit-system cockpit-packagekit

Ahora podremos gestionar el servidor desde http://127.0.0.1:9090

Gestión de las máquinas virtuales

Si bien se pueden gestionar las máquinas virtuales de Cockpit de manera fácil, el interfaz es algo limitado con respecto a lo que podía hacer con Proxmox. Pero esto es fácilmente solucionable si las gestionamos desde Virtual Machine Manager, un software que puede estar instalado en nuestro sobremesa o portátil y que permite gestionar tanto las máquinas virtuales en local como remotas.

GPU passthrough en Proxmox

lunes, 12 de agosto de 2019 Sin comentarios

Después de haber instalado Proxmox en un HP Gen8, mi intención era la de virtualizar LibreElenc para utilizarlo como centro multimedia y un Windows 10 para poder hacer uso de mi biblioteca de Steam. Tras un poco de modding en la pequeña torre e incorporar una GTX 1050Ti (concretamente la Gigabyte GV-N105TOC-4GL) me quedaba por delante configurar Proxmox para permitir dejar paso directo de la tarjeta gráfica a los sistemas virtualizados.

Configuración de la máquina virtual

Para ello la máquina virtual debía incorporar en su fichero de configuración («/etc/pve/qemu-server/100.conf») las siguientes opciones:

  • machine: q35
  • hostpci0: 07:00,pcie=1,x-vga=on

La segunda opción depende de cada equipo y es el resultado de haber obtenido lo siguiente tras lanzar el comando «lspci»:

07:00.0 VGA compatible controller: NVIDIA Corporation GP107 [GeForce GTX 1050 Ti] (rev a1)
07:00.1 Audio device: NVIDIA Corporation GP107GL High Definition Audio Controller (rev a1)

Error al arrancar la máquina virtual

Cuando intentemos arrancar la máquina virtual, lo más probable es que nos indique lo siguiente:

vfio: failed to set iommu for container: Operation not permitted

Lo que parece en principio un problema de permisos tiene un trasfondo más complejo que afecta al kernel y que podemos comprobar con el comando «dmesg | grep -e DMAR -e IOMMU» que nos devolverá lo siguiente:

vfio-pci 0000:07:00.1: Device is ineligible for IOMMU domain attach due to platform RMRR requirement. Contact your platform vendor.

Recompilación del kernel

La forma de solucionar el problema es recompilando el kernel tras haber incorporado un pequeño parche al mismo.

Actualizaremos el sistema e instalaremos los paquetes que vamos a necesitar:

  • apt-get update
  • apt-get install git nano screen patch fakeroot build-essential devscripts libncurses5 libncurses5-dev libssl-dev bc flex bison libelf-dev libaudit-dev libgtk2.0-dev libperl-dev libperl-dev asciidoc xmlto gnupg gnupg2 rsync lintian debhelper libibery-dev libdw-dev libnuma-dev libsplang2-dev libiberty-dev libslang2-dev debhelper sphinxdoc-common
  • apt-get install lz4 (si utilizamos los fuentes de Ubuntu EOAN de la versión 5.4 del kernel de Proxmox)
  • apt-get install pve-headers-5.4.24-1-pve (la versión dependerá del kernel que estemos tratando de compilar)

Descargaremos el código fuente del kernel que vamos a recompilar y de aquel de donde sacaremos el parche:

  • cd /usr/src/
  • git clone git://git.proxmox.com/git/pve-kernel.git
  • git clone git://git.proxmox.com/git/mirror_ubuntu-disco-kernel.git
  • mv mirror_ubuntu-disco-kernel ubuntu-disco

Hacemos una copia del parche que necesitamos y lo editamos con nano:

  • cp ubuntu-disco/drivers/iommu/intel-iommu.c ubuntu-disco/drivers/iommu/intel-iommu_new.c
  • nano ubuntu-disco/drivers/iommu/intel-iommu_new.c

En el editor de nano buscaremos con el comando «CTRL+W» el siguiente tecto:

if (device_is_rmrr_locked(dev)) {
dev_warn(dev, «Device is ineligible for IOMMU domain attach due to platform RMRR requirement. Contact your platform vendor.\n»);
return -EPERM;
}

Y lo cambiaremos a lo siguiente (se elimina el «return» y se añade al texto algo que nos haga saber más tarde que se está aplicando nuestro parche) :

if (device_is_rmrr_locked(dev)) {
dev_warn(dev, «Device was ineligible for IOMMU domain attach due to platform RMRR requirement. Parcheado.\n»);
}

De los dos ficheros generaremos un diff:

  • diff -u /usr/src/ubuntu-disco/drivers/iommu/intel-iommu.c /usr/src/ubuntu-disco/drivers/iommu/intel-iommu_new.c > remove_rmrr_check.patch

Habrá que adaptar la cabecera de ese diff generado, quedando de forma similar a este (se cambian las rutas de los ficheros y sus nombres):

— a/drivers/iommu/intel-iommu.c 2019-07-17 15:44:26.908520624 +0200
+++ b/drivers/iommu/intel-iommu.c 2019-07-17 15:48:09.380083344 +0200

Moveremos el diff al lugar donde la recompilación lo buscará:

  • cd /usr/src/pve-kernel/
  • mv ../remove_rmrr_check.patch ./patches/kernel/

Modificaremos un script que busca ficheros con nombres problemáticos:

  • nano debian/scripts/find-firmware.pl

Y comentaremos una de las primeras líneas para que quede más o menos de esta forma:

#die «strange directory name» if $dir !~ m|^(.*/)?(5.0.\d+\-\d+\-pve)(/+)?$|;

Configuraremos el Makefile:

  • nano /usr/src/pve-kernel/Makefile

En él buscaremos «EXTRAVERSION» y lo dejaremos de la siguiente forma:

  • EXTRAVERSION=-${KREL}-pve-removermrr

Y finalmente lanzaremos el make:

  • make

Si todo ha ido bien, nos habrá generado una serie de ficheros «.deb» que instalaremos de la siguiente forma:

  • dpkg -i *.deb

Si nos ha fallado por algún motivo y tenemos que relanzar de nuevo el «make» es posible que no nos deje y tengamos que añadir al fichero «Makefile» la opción «-d» quedando de esta forma:

${LINUX_TOOLS_DEB} ${HDR_DEB}: ${DST_DEB}
${DST_DEB}: ${BUILD_DIR}.prepared
cd ${BUILD_DIR}; dpkg-buildpackage –jobs=auto -b -uc -us -d
lintian ${DST_DEB}
#lintian ${HDR_DEB}
lintian ${LINUX_TOOLS_DEB}

Comprobación de la instalación

Una vez que tengamos el nuevo kernel instaldo mediante los «.deb» anteriores, reiniciaremos la máquina y cuando lancemos nuestra máquina virtual, mediante el comando «dmesg | grep -e DMAR -e IOMMU» obtendremos el mensaje:

vfio-pci 0000:07:00.1: Device is ineligible for IOMMU domain attach due to platform RMRR requirement. Parcheado.

Fuente

Las pautas han sido sacadas de lo que ahora es un pequeño tutorial pero en su día fue un verdadero quebradero de cabeza.

Huawei Watch 2 con ROM personalizada, Magisk y EdXposed

miércoles, 15 de mayo de 2019 Sin comentarios

El Huawei Watch 2 es un reloj inteligente que incorpora la versión Oreo de Android Wear. Si queremos dotarlo de una versión optimizada y «rooteada» del sistema hay que seguir algunos pasos:

  1. Cargar el recovery de TWRP. No lo instalaremos porque me ha dado problemas al desvincularlo del teléfono.
  2. Instalar la ROM personalizada desde TWRP.
  3. Instalar Magisk desde TWRP.
  4. Instalar Riru-Core v19 desde Magisk.
  5. Instalar el módulo EdXposed para Magisk.
  6. Instalar el administrador de EdXposed.

Precaución

Estos pasos pueden dejar tu reloj inservible (bricked) y borrar todo su contenido, así que procede bajo tu propia responsabilidad.

Recovery de TWRP

  1. En el reloj vamos a «Ajustes->Sistema->Información» y pulsamos sobre «Número de compilación» 7 veces. Eso nos habilitará las opciones de desarrollador.
  2. Vamos a «Ajustes->Opciones para desarrolladores» y activamos «Depuración ADB».
  3. Conectar el reloj al ordenador y abrir un terminal para poner lo siguiente:
    • «adb devices» (nos mostrará nuestro reloj).
    • «adb reboot bootloader» (reiniciará el reloj en un modo que nos permitirá realizar los siguientes pasos).
    • «fastboot devices» (muestra nuestro reloj).
    • «fastboot oem unlock» (desbloquea el arranque del reloj, motivo por el cual, a partir de ahora, cada vez que encendamos el reloj nos saldrá un aviso de tal hecho pero que no afecta al funcionamiento del reloj).
    • Habrá que mantener pulsado el botón según nos lo pida en pantalla para aceptar el desbloqueo del reloj.
    • «fastboot reboot» (reiniciamos).
  4. Procedemos a lanzar el recovery poniendo lo siguiente en un terminal:
    • «adb reboot bootloader» (reiniciará el reloj en un modo que nos permitirá realizar los siguientes pasos).
    • «fastboot boot oreo-recovery.img» (carga el TWRP que podemos descargar desde aquí).
    • Hacemos copia de seguridad de system, boot, etc.
    • «fastboot flash recovery oreo-recovery.img» (en caso de que lo queramos dejar instalado, pero no lo recomiendo).

Nota: si queremos arrancar en «bootloader» manualmente, solo tenemos que apagar el reloj, mantener pulsado el botón de encendido y, cuando vibre, soltamos y volvemos a pulsar una vez más el botón.

Instalar ROM

  1. Habiendo arrancado el TWRP del paso anterior, podemos copiar la ROM correspondiente al reloj que habremos descargado para la versión LTE/4G o la versión BT/Classic y también Magisk.
  2. Desde el menú de TWRP hacemos un «Wipe data» y «Factory reset».
  3. Pulsaremos sobre «Install», buscaremos el fichero .zip que hemos copiado y que contiene la ROM y esperaremos a que finalice el proceso.
  4. Tras lo anterior reiniciaremos de nuevo en TWRP desde las opciones de reinicio que nos ofrece él mismo.
  5. Iremos a la opción «Install» y seleccionaremos el .zip de Magisk.
  6. Reiniciamos el sistema y dejamos que el reloj arranque para realizar la configuración inicial y emparejamiento con el móvil.

Instalar Riru-Core

  1. Desde el reloj abrimos la aplicación de Magisk y desde el menú superior izquierdo podemos acceder a «Descargas».
  2. Arriba a la derecha podremos pulsar sobre la lupa y buscar «Riru».
  3. Instalaremos «Riru – Core» y «Riru – EdXposed (YAHFA)». Este último se podría instalar mediante TWRP.
  4. Reiniciamos el reloj.

Instalar EdXposed

  1. En el reloj vamos a «Ajustes->Sistema->Información» y pulsamos sobre «Número de compilación» 7 veces. Eso nos habilitará las opciones de desarrollador.
  2. Vamos a «Ajustes->Opciones para desarrolladores» y activamos «Depuración ADB».
  3. Conectar el reloj al ordenador y abrir un terminal para poner lo siguiente:
    • «adb install EdXposedInstaller_v2.2.4-release.apk» (esto instalará la aplicación para administrar EdXposed y que habremos descargado desde aquí).
  4. Abriremos la aplicación de EdXposed y ya podremos instalar módulos como Xposed Edge.

Es posible que me haya dejado algo, pero básicamente está todo sacado de los enlaces que he puesto arriba de XDA.

Categories: Android Wear Tags: , , , , ,

Problemas con la Wifi con un adaptador RTL8723BE

jueves, 16 de abril de 2015 Sin comentarios

Parece ser que existe un bug en el kernel que provoca una funcionalidad extremadamente lenta o incluso la imposibilidad de establecer conexión a través de la Wifi en ciertos equipos que utilizan el RTL8723BE.

La solución provisional es la de descargar los drivers y compilarlos con dos sencillos comandos:

$ make

$ sudo make install

Categories: GNU/Linux Tags: , ,